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Abstract

In the energy transition towards a carbon-free society, the continuous changes that energy

systems are experiencing, together with the increasing penetration of renewable generation, as

well as the incorporation of short-term storage technologies such as batteries, have increased

the effort to model and predict its development and operation. In this context, power system

models play a relevant role. However, to be suitable to the decision-making process, these

tools should not require a massive computational effort. To overcome this challenge, this

paper proposes a new methodology to reduce the temporal dimension of the problem while

maintaining accurate results. This methodology is especially designed for medium-term op-

eration of real-size power systems with a significant presence of renewable generation and

storage systems. By means of a two-stage clustering algorithm, the temporal structure of the

input parameters of the model is transformed into different levels of time aggregation. This

arrangement makes the problem manageable and computationally tractable. In addition,

together with the newly incorporated model formulation, this methodology allows to capture

at the same time the short- and medium-term variability present in power systems.
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Nomenclature

Indices and Sets

b ∈ B Battery energy storage systems

bl ∈ BL Time blocks (determined by changes in st)

e ∈ E Market agents5

h ∈ H Hydro generation units

hr ∈ HR Hours

p ∈ P Periods (e.g., weeks, months)

st, st′ ∈ ST System states

t ∈ T Thermal generation units10

td ∈ TD Types of days

Parameters

ρcb Charging efficiency [p.u.]

ρdb Discharging efficiency [p.u.]

θe,p Conjectured-price response [e/MWh2]15

capb Maximum energy capacity of battery b [MWh]

Dp Demand in period p [MWh]

drb Maximum charging/discharging power [MW]

durst Duration of system state st [h]

Ndaysp,td Number of days of type of day td in period p20

ob Ownership of battery b [p.u.]

oh Ownership of hydro unit t [p.u.]

ot Ownership of thermal unit t [p.u.]

Variables

λp Electricity price in period p [e/MWh]25

beh,p,st Pumped power [MW]

Ce,p Cost function for agent e [e]

pcb,p,st Charging power of battery b [MW]

pdb,p,st Discharging power of battery b [MW]

phh,p,st Hydro production [MW]30
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ptt,p,st Thermal production [MW]

Qe,p Production of agent e in period p [MWh]

SOCb,p,td,bl State of charge of battery b [MWh]

1. Introduction

In the last years, and as a result of the goals proposed in the Paris Agreement of 2015 [1],35

numerous regulatory policies have originated with the aspiration of reducing the emission of

greenhouse gasses to prevent global warming. In the electricity sector, the way to achieve

these climate change goals is by lowering the environmental impact of energy generation,

that in general implies a decarbonization of the electricity systems. This process is enabled

by the integration of renewable technologies such as wind and solar. However, renewable40

technologies lead to an increase in variability and uncertainty in the system. Therefore, the

more penetration of this kind of generation, the bigger the need for flexibility in the system

[2]. Flexibility on the generation side is provided by different technologies, such as gas power

and energy storage systems, for instance, pumped hydro or battery energy storage systems

(BESS) [3]. During sunny and windy days, storage systems are useful to store the surplus45

of renewable generation. On the contrary, over long dark and windless periods of time, gas

power plants have been acting as a backup solution to compensate the shortage in generation

by rapidly turning on or off. However, because gas-power plants are carbon-emitting, energy

storage systems are recently gathering momentum as the proposed solution for this issue.

Since flexibility is often associated with the short-term dynamics of the system, the challenge50

resides in how to include all the effects of short-term variability in medium- to long-term

operational studies with an appropriate level of detail.

In power system modeling, a key component to achieve an adequate representation of

the outcome of energy systems is the temporal resolution chosen to model it. Moreover, in

this context, the temporal resolution becomes crucial in order to capture the variability of55

the wind and solar resources, as well as the cycles of the complementing technologies that

provide the necessary flexibility in the system [4]. In electricity systems, time steps can vary

from minutes or hours in the short-term operation, to years or decades, in the long-term

planning. Certainly, the best results are obtained when setting this resolution to the highest
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degree, typically on an hourly basis. However, hourly resolution significantly increases the60

complexity of models, raising potential computational difficulties in real-size power systems.

The most common alternative to face this issue is a temporal aggregation. This often results

in computationally tractable models that are, therefore, easier to solve. However, it also

results in a loss of accuracy.

1.1. Literature review on temporal aggregation methods65

Simplifying the temporal framework of the model significantly reduces the size of the

problem and its complexity. In this context, there are many works in the literature that

address temporal aggregation techniques. On the whole, they can be divided into two different

types of time-period aggregation: representative periods and system states [5].

1.1.1. Representative periods70

They can be understood as groups of consecutive time steps that characterize operational

cycles, such as hours, days or even weeks. Following this approach, the full horizon of the

problem gets approximated by a number of repetitions of these representative time periods.

One of the advantages of reducing the time frame into representative periods is that the

chronology is preserved within each period. In systems with a high share of renewable75

generation and flexibility resources, chronology allows to integrate the intra-period dynamics

into the model to better reflect ramping or storage constraints, for instance.

The use of representative periods differs in terms of the duration of the period itself. Some

works use typical or representative days to estimate the whole operation of the system. For

instance, reference [6] proposes an original approach to represent a full year of data in six to80

ten typical days, depending on the share of renewable considered. It makes use of k-means

clustering to extract representative profiles from the demand that, integrated in a model

of the electricity system of Great Britain, generating accurate results. Aimed at the same

power system, reference [7] introduces the use of several time series in the clustering process

to find representative days that preserve the correlations present between system variables85

such as demand and wind and solar production. That helps to represent the fluctuations of

renewable resources. In contrast, other works use a longer duration for the representative
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periods, such as weeks [8] or months [9]. This favors a better measure of the seasonal cycles

present in the system operation.

However, none of the abovementioned works consider the continuity between the represen-90

tative periods in their selection procedure. Preserving inter-period chronology is important

to be able to model long-term operation. In this sense, a novel formulation is introduced in

[10] to address the coupling of typical days. This allows for capturing seasonal variability.

However, this approach is applied at a regional level, raising concerns about its extensibility

to large-scale more complex problems. Furthermore, reference [5] introduces an enhanced95

version of the representative periods methodology to account for the chronology between

days. The results show an overall better representation of short- and long-term dynamics.

A new challenge arises when selecting these representative periods. There are many

works in the literature that attempt to establish methodologies to select them, as well as to

validate its effectiveness in energy system modeling. Reference [11] provides an analysis where100

different time aggregation methods are compared in a case study of the electricity system of

Great Britain. Although the authors conclude there is not a definitive method to accurately

represent long-term operation with simplified time resolutions, they suggest heuristic-based

methods offer superior performance. However, heuristics have limitations in establishing clear

and general criteria to select representative periods for every situation. Another noteworthy105

comparison of different methods is carried out in [12]. After analyzing several clustering

methods, the authors conclude that the impact on the results is not significantly linked with

the aggregation method used, but with the characteristics of the system in which it is applied.

Additionally, in [13], a framework is proposed that highlights the main features of aggregation

techniques. Finally, an extensive and thorough classification of these works is provided in110

[14].

In short, the selection of representative periods is highly linked to the specific character-

istics of the targeted system, and that makes it difficult to establish a general methodology

that works well in every case it is applied.
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1.1.2. System states115

Load levels or load blocks comprise one of the simplest ways to aggregate time in energy

modeling. Traditionally, load duration curve blocks have been used to approximate the

demand time series, simplifying the temporal framework of the model [15, 16]. However, the

lack of chronology in this methodology makes it not suitable to the new challenges of energy

modeling.120

Instead, system states constitute an enhanced framework of the traditional load levels.

System states are created by grouping hours with similar characteristics within a period. This

framework, introduced in [17], allows for efficient computation without an important accuracy

loss, since it incorporates the chronological information between time slots. Although system

states are not temporally coupled, the transitions between them reflect this chronology. This125

helps the representation of the unit commitment in the model.

There are several works in the literature that have chosen similar approaches to maintain

chronology when reducing the time dimension in electricity models. In [18], the authors

incorporate the operation of storage units into medium-term models within the system states

framework. This formulation is extended to multiple-node systems in [19]. Continuing with130

this work, reference [5] proposes an improved representation of the system states by dividing

the formulation into short- and long-term storage constraints. This separation attempts to

better handle the dynamics in each temporal scope, although adds further complexity to

the problem. In addition, short-term operation is not properly represented. Furthermore, in

[20], the authors propose a novel approach using a hierarchical clustering procedure to group135

consecutive hours and determine the optimal capacity investment plan of a power system

with great presence of renewable generation and storage units. Although this approach

shows better performance, compared with other methods, it cannot capture well short-term

dynamics.

Recently, a comparison of the two main approaches for time aggregation was carried140

out in [21]. The authors conclude than the representative periods approach in [5] achieve

a better representation of the short-term storage. However, this approach is insufficient

for overcoming the chronological clusters methodology in [20] in the handling of long-term

dynamics. In short, none of these methods achieves a definitive superior outcome under every
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condition.145

1.2. Objectives and contributions

Medium- and long-term analysis of real-size electricity systems requires a high level of

detail of many outputs of the system operation, such as monthly contracts, commitment of

marginal units, hourly electricity prices, weekly hydro management signals, etc. All these

outputs play a relevant role in the decision-making process. This degree of detail, though,150

is not accurately achieved applying classical aggregation approaches. In this work, a new

approach is proposed to address this problem.

This paper proposes a comprehensive methodology to obtain a temporal representation

suitable for medium- and long-term optimization models of power systems operation. This

methodology is especially applicable to systems with a significant presence of flexible units155

and a high share of renewable generation. A novel two-stage clustering technique is imple-

mented, to obtain accurate daily representatives of the operation within each period (weeks

or months). Unlike other works that select representative days from the whole time horizon of

the problem [5, 10], the methodology proposed in this paper divides the time horizon in peri-

ods, analyzes each day individually, and groups them according to its similarities. Finally, it160

selects a representative for each of those groups. These representatives are subsequently split

into system states or groups of hours. This process allows to preserve a daily representation

of the system which aides to accurately incorporate short-term variability in planning models

and to correctly model particular aspects of the system such as short-term storage and gas

resources management. At the same time, monthly or weekly periods maintain the necessary165

chronology to properly characterize long-term storage operation and contract decisions, such

as take or pay clauses, etc.

The main contributions of this paper are outlined below:

� The definition of an innovative temporal aggregation methodology to model both the

short- and medium-term operation in electricity systems. This methodology is eas-170

ily configurable according to the desired accuracy and the available computational

resources.
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� The incorporation of short-term storage constraints into a medium-term market equilib-

rium model. This formulation is able to reduce significantly the computational intensity

of the problem, while providing valuable results.175

� An extensive sensitivity analysis of the results in a real-size electricity system case

study, where the outcomes of a vast variety of model realizations are compared against

a benchmarked hourly execution.

The remainder of this paper is structured as follows: Section 2 introduces the proposed

methodology and describes the formulation of the market equilibrium model. Meanwhile,180

Section 3 contains the case study in which this methodology is applied for storage solutions

management optimization. Finally, the conclusions of this work are provided in Section 4.

2. Methodology

This section covers the temporal aggregation methodology proposed in this paper and

explains the main aspects of consideration when building it.185

2.1. Temporal aggregation

The temporal dimension of the model can be divided in two features, the temporal reso-

lution, also known as time steps, time slices or system states, and the temporal horizon, i.e.,

the temporal distance covered by the model. In the medium term, the time horizon ranges

typically between a few months and two or three years. As for temporal resolution, it will190

be defined by the proposed temporal aggregation methodology.

As explained above, time aggregation is implemented to simplify energy system models

and make them easier to solve. Depending on how to carry out this aggregation, the results

obtained from the models will realistically or not represent such systems.

In general, electricity systems are characterized by seasonalities at different scales. These195

patterns, generated by consumer behavior or climate conditions among other factors, deter-

mine to a great extend the operation of the system. Evidence of this behavior is the seasonal

operation found in energy storage systems: large hydro units reservoirs, for instance, are

often guided by weekly, monthly, or yearly instructions that adapt to these variations. Fur-

thermore, BESS usually keep daily cycles (a cycle in this context is understood as the time200
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that the capacity of a storage system takes to completely charge and discharge). If the

objective is to correctly represent the medium-term operation, the model must be able to

properly consider the different idiosyncrasies present in electricity systems, such as seasonal-

ity at multiple scales. To achieve that, the methodology proposed in this paper starts from

the selection of a control variable that holds the information about all these patterns of the205

fundamentals. The hourly observations of this variable are then clustered into periods (typ-

ically weeks or months), types of days (clusters of days within a period) and system states

(clusters of hours within a day). This new temporal structure is subsequently applied to the

rest of the parameters of the fundamental model (Figure 1).

The methodology is broken down into the following steps:210

Step 1: Define the control variable

Initially, set the time series X = {x1, . . . , xhr, . . . , xHR} as the control variable in which

the clustering process is applied, where xhr is the observation at hour hr and HR is the total

number of hours throughout the full horizon of the problem. This selection is crucial to have

a reasonable view of the operation of the system.215

Traditionally, the dynamics of the demand, which presents daily, weekly and annual

seasonality, drove the market outcome. In this situation, demand would be usually selected

as the control variable. However, this changed the moment non-dispatchable sources of

electricity started to appear. For instance, market operation in hours with low demand and

high wind generation is very different from the operation in hours with low demand and no220

presence of wind. Therefore, it is necessary to select a control variable that better represents

the operation of the market when these sources of generation are increasingly predominant.

The solution to this problem is to define the so-called net demand as the control variable.

The net demand is calculated as the part of the demand that is covered by dispatchable

generation, so its value depends on the main factors that drive the operational variations225

present in the system. This is obviously different for each electricity system. Nevertheless,

the design of the proposed methodology makes it highly configurable, so this term can be

be defined in every system depending on the usual operation of the existing technologies.

Because net demand contains all the idiosyncrasies that guide de operation of the existing
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Figure 1: Diagram of the proposed methodology.

technologies in electricity systems, it is reasonable to use this variable as the basis to reduce230

the set of periods.

Step 2: Divide the time series into periods

Once the control variable has been selected, the whole horizon of the problem is divided in

consecutive time periods. Periods are predefined depending on the nature of the system and

the specific aspects that regulate it. Weeks or months are typically chosen as these periods235

since hydro operation cycles tend to follow a similar behavior. In the following, periods will

be particularized to months for the sake of clarity.

For each month m, let Ym be the m-partition of X with cardinality Mm, containing the

time series observations yn ∈ X, n = 1, . . . ,Mm corresponding to the hours of month m.

Step 3: Normalize the monthly time series240

Normalize the monthly time series Ym into Ŷm, such that each data point of the original

time series yn is transformed in ŷn according to ŷn = yn
max(yj :j=1,...Mm)

.

This step is particularly important when dealing with data from multiple areas. In such

a case, normalization ensures that data from larger areas are not over-represented.

Step 4: Arrange the monthly time series into daily vectors245
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Arrange the normalized monthly time series Ŷm in daily vectors {v1, . . . ,vD}, where D

is the number of days in month m, and each vector vi ∈ R24 corresponds to a day.

After the normalization, the monthly time series is organized by days as preparation for

the next step.

Step 5: Aggregate days into types of days250

FindK clusters TD = {TD1, . . . , TDK} and its corresponding cluster centers {td1, . . . , tdK} ∈

R24 (hereinafter referred as centroids or “types of days”) by means of a k-means clustering

algorithm, so that that the Euclidean distance from each vector vi to its respective cluster

centroid tdj is minimized.

This stage consists of grouping the days belonging to each month according to its similar-255

ity. For this step, a vector-based k-means clustering method will be implemented. Selecting

an appropriate value of clusters is a difficult task. The lower the number of types of days, the

lower the complexity of the model but the worse the accuracy of the results. Therefore, it

is required to establish a reasonable criteria to propose an optimal number of types of days,

depending on our needs. More details about the measures used are found in Section 3.260

Step 6: Assign each day to a type of day

Assign each vector vi to the closest cluster TDj, such that the membership of each vector

π (vi) can be stated as: π (vi) = argmintd1,..tdK

∑K
j=1 ||vi − tdj||2.

Once all types of days have been calculated, there is a direct correspondence between

days and types of day, in the sense that every day is assigned to a type of day.265

Step 7: Aggregate types of days into system states

For each type of day tdj = {td1, . . . , td24}, apply again a clustering process to find N

clusters of hours ST = {ST1, . . . , STN}, also known as “system states”, and its corresponding

cluster centers {st1, . . . .., stN} ∈ R.

Likewise, a second round of clustering will be carried out to find system states within270

the types of days. According to this procedure, the hours belonging to the centroids of the

types of days will be entered in a one-dimensional k-means clustering algorithm to extract
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Figure 2: Example of the clustering process following the temporal aggregation structure proposed in Sec-
tion 2.1.

the system states. This ensures that all days represented by every type of day are considered

equal in the modeling structure. As a consequence of this clustering process, each hour of

the model is assigned to a system state. As abovementioned, which number of system states275

should be selected depends on the specific characteristics of the energy system model as well

as the intended accuracy of the results and the available computational resources.

2.2. Model Description

The proposed methodology is implemented using a specific formulation in a market equi-

librium model. This section is intended for providing a detailed description of this formulation280
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and how it can be integrated with the clustering structure presented in Section 2.1.

The proposed formulation represents an extension of the conjectural variation (CV) based

model developed in [15], in such a way that it incorporates the designed temporal aggrega-

tion into the objective function as well as long- and short-term storage. Because market

equilibrium models are able to accurately capture market behavior, this approach represents285

the most realistic way to model operational planning in liberalized electricity systems. In

this context, each market agent e aims to maximize its profit with its production Qe,p at

every period. As demonstrated in [15], the market equilibrium problem can be stated as the

following equivalent quadratic minimization problem:

min
Qe,p

∑
e,p

(
Ce,p (Qe,p) +

θe,p
2
Q2

e,p

)
(1)

subject to:

∑
e

Qe,p = Dp : λp ∀p (2)

H (Qe,p) ≥ 0 ∀e, p (3)

Ce,p (Qe,p) represents the cost function for agent e and includes the total operational and290

maintenance costs. The conjectured-price response θe,p measures the change in price λp with

respect to the production Qe,p, as in (4):

θe,p = − ∂λp
∂Qe,p

∀e, p (4)

Equation (2) is the demand balance constraint, and the rest of the technical and economic

constraints are represented in (3). Henceforth, specific formulation will be introduced to

model the behavior of storage units.295

With regard to short-term storage operation, constraints that model the operational be-

havior of BESS must be incorporated to the model.
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SOCb,p,td,bl = SOCb,p,td,bl−1

+
∑

(hr,st)∈bl

(ρcb · pcb,p,st − ρdb · pdb,p,st) ∀b, p, td ∈ p, bl ∈ td (5)

Equation (5) describes the development of the intra-day state of charge of battery b

(SOCb), to maintain a feasible energy balance: the stored energy at the end of period p

equals the stored energy at the end of the previous period plus all the charging and discharging300

(limited by their corresponding efficiencies) of the battery occurred during this time period.

The representation of days by a set of system states introduced in this paper allows us

to define (5) at just specific hours, when there is a switch of state. Under this scheme,

it is possible to divide the day into time blocks (formulated as bl), grouping consecutive

hours assigned to same system state. For instance, given the example structure in Figure 2,305

the approximated hourly curve of feb-11 can be divided into 7 time blocks: [hr1, hr2 −

hr6, hr7, hr8 − hr13, hr14 − hr18, hr19 − hr21, hr22 − hr24]. In general, the number of blocks

will depend on the number of system states as well as how they transition throughout the

day. These transitions are, in turn, result of the non-supervised clustering process that

assigns every hour with a unique state. This approach reduces considerably the number of310

equations, and therefore, the computational complexity of the model, while maintaining an

exact solution considering the time defined aggregation.

Additionally, equation (6) establishes the daily cyclic condition of the BESS, assuming

their state of charge is the same at the beginning of each day, and they are initially empty.

∑
st∈td ((ρcb · pcb,p,st − ρdb · pdb,p,st)durst)

Ndaysp,td
= 0 ∀b, p, td ∈ p (6)

On this basis, BESS operation is not temporally coupled between different types of days.315

This assumption in in line with the natural operation of BESS. According to the usual devel-

opment of electricity prices, lower prices are found in the first hours of the day, corresponding

with night time. Therefore, it is precisely in this time frame when it makes the most sense

to charge the batteries. This means that batteries should be mostly discharged at the end of

the day in almost every real situation. Nevertheless, this methodology could be extended to320
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accommodate another form of supraday operation.

Finally, equations (7)-(9) establish the lower and upper bounds of the variables that define

the batteries operational design.

pcb,p,st ≤ drb ∀b, p, st (7)

pdb,p,st ≤ drb ∀b, p, st (8)

SOCb,p,td,bl ≤ capb ∀b, p, td, bl (9)

Moving on to the rest of the model’s formulation, the total production of each market

agent Qe,p can be separated into hydro production and thermal production. If the pumped325

water from reservoirs and the energy charged and discharged from the batteries are also

considered, the following statement holds:

Qe,p =
∑
st

( ∑
t:ot=e

ptt,p,st

+
∑

h:oh=e

(phh,p,st − beh,p,st)

+
∑
b:ob=e

(pdb,p,st − pcb,p,st)
)
durst ∀e, p (10)

The rest of the constraints such as commitment decisions, contracts, ramps, hydro reserves

limitations, and other techno-economic details were excluded from this section for simplicity,

since they do not represent an original contribution. Nevertheless, they were taken into330

account in the simulations performed for the case study in Section 3.

An overview of the complete methodology is depicted in Figure 1. In this figure, the

resulting aggregation determined by the clustering process is used for both transforming the

inputs to the model as well as de-transforming the outputs to obtain the final hourly results.
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3. Case Study and Results335

This section presents a comprehensive real-size case study intended to illustrate the

methodology proposed in this paper, as well as to provide a sensitivity analysis of the results

to the possible temporal aggregation configurations. Note that the data and assumptions in

this section should not be construed as a real representation of the system. They are used

as an example of the application of the methodology.340

3.1. System description

A real-size detailed representation of the Iberian electricity market (MIBEL) is used for

this case study. This system consists of Spain and Portugal, where all thermal and hydro

units are individually considered, including every technical and economic characteristic. Non-

dispatchable generation is also taken into account, aggregated by technology for every hour.345

Furthermore, interconnections between areas are modeled too, including the representation

of the electricity trade with external regions.

Regarding energy storage systems, this electricity system accounts for several pumped

hydro storage plants, which are incorporated in the model. A fast-ramping Li-ion BESS is

also considered. This BESS is characterized by a total energy capacity of 100 MWh and a350

charging/discharging capacity of 25 MW, which corresponds to a 4-hour discharge from the

maximum capacity. The efficiency of both charging and discharging processes is assumed to

be the same, equal to 0.9. Initially, the battery is assumed to be empty, and it holds a daily

cycle.

Finally, the model covers all policies that regulate every aspect of the operation of the355

market.

3.2. Temporal aggregation configurations

The selected horizon for this case study is the year 2019, with an hourly resolution.

Withal, temporal aggregation according to the methodology presented is implemented. The

full horizon is divided first in periods corresponding to months, due to the monthly nature360

of the hydro management signals in this system. Subsequently, the hours of every month

are aggregated into a clustering configuration. This clustering configuration is the same for
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every month and vary with each test performed. The input control variable used for the

clustering process is the net demand, as explained in Section 2.1. Because nuclear generation

in MIBEL is dispatched as baseload, and its production level keeps invariant for most of the365

time, it will be subtracted to calculate the net demand. Thus, net demand would be equal

to the demand minus the renewable and nuclear generation, minus the run-off-the-river. As

previously mentioned, this definition may vary depending on the system being analyzed.

As a point of reference, a complete hourly resolution execution is carried out. This

execution is characterized by a temporal configuration in which every month is represented370

by as many types of days as there are days in the month (a maximum of 31), and every type

of day is modeled with 24 system states, corresponding to every hour. The obtained results

are the benchmark against which the rest of the executions will be measured.

Apart from the hourly model, a total of 712 more model configurations are run. If every

month of each execution is modeled in the same way, the number of combinations of types375

of days and system states represent the total number of executions. The 31 configurations

with one system state are discarded as it is necessary to have at least two system states to

have a feasible representation of the BESS constraint. Therefore, the number of executions

of the model covers the total number of feasible combinations between types of days within

each month, and system states within these types of day. This wealth of executions of a real-380

size fundamental model allows us to better analyze the effect that the temporal reduction

proposed in this paper brings on the results.

The machine used to run all these tests was a computer with Intel (R) Xeon (R) Silver

4116 CPU @2.10 GHz with 40 logical processors and 128 GB of installed RAM memory

running 64-bit Windows Server 2019. The model was executed in GAMS 32.2.0, using the385

commercial solver CPLEX 12.10.0.0.

To compare the different temporal aggregation configurations, it is necessary to establish

reasonable indicators. In this case study, the mean absolute error (MAE) and the mean

absolute percentage error (MAPE) were used as the main criteria to compare the executions.

In order to have a clear understanding of the results of the model for each clustering con-390

figuration, the following variables are selected: thermal generation, hydropower production,

non-dispatchable generation, electricity prices and energy storage levels, both in the modeled
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(a) (b)

(c)

Figure 3: Number of equations and variables (3a), RAM required (3b) and CPU time taken (3c) for each
execution with respect to the number of system states per month represented. Every point corresponds to a
realization of the model for a specific clustering configuration.

reservoirs and the incorporated BESS. On the whole, both metrics calculated across these

variables will determine to a great extent the accuracy of the results of every test performed

against the hourly realization.395

3.3. Results

3.3.1. Size and CPU time

Firstly, since the methodology is intended to render computationally tractable models, it

is worth to look at the model dimensions and CPU time in every test performed. This infor-

mation is represented in Figure 3, where the number of variables and equations, maximum400

RAM required and CPU times are portrayed with respect to the total number of system

states modeled by month. To have a reference, the hourly model consists of 3,385,516 equa-

tions and 9,110,800 variables. It took 5,672 seconds to run and required 148.5 GB of RAM

memory. According to the formulation in Section 2.2, the bigger the total number of system
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Figure 4: Evolution of the objective function error with respect to the number of systems states modeled per
month.

states, the bigger the model and its complexity. It can be observed that, in general, both405

the number of variables and equations increases linearly with the number of system states,

while the RAM memory shows a quadratic growth and the CPU time seems to increase

exponentially.

3.3.2. Objective function

To keep the model computable and manageable, a small number of system states are410

needed. However, reducing the number of states has a detrimental effect on the accuracy of

the results. This impact is represented in Figure 4, where the absolute percentage error of

the objective function is drawn.

As can be seen, the objective function error decreases as the number of system states

increases. More specifically, this decrease retains an exponential trend. Hence, adding more415

states will dramatically reduce the error when a small number of system states are defined, but

slowly decrease it when more states are modeled. This allows to get a reasonable accuracy

when just a few system states are modeled. An exponential decay is also detected when

looking at the curves of the error for each individual number of types of days. Also, Figure 4

shows that with the minimum number of types of days considered (1 type of day), the error is420

always above 1e−3%. However, if we slightly increase this number of types of days, the error

decreases significantly. For instance, with 5 types of days, the error is lower than 4e−4%
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Figure 5: MAE for every analyzed output against the system states modeled per month.

3.3.3. Productions, reserves, and prices

Whereas the objective function value provides a good measure of the effectiveness of the

methodology, it is worth analyzing the errors found in the results for the main variables of425

the model to have a more meaningful comparison. These results are depicted in Figure 5.

While the same general trend is noticed across all variables, the sensitivity of energy storage

levels to the temporal configuration for the BESS deserves special attention.

When paying close attention to the sensitivity curves in Figure 5, the hourly evolution of

the state of charge of the battery appears to be more sensitive to a better representation of430

every type of day, rather than to an increase in the number of types of days. Alternatively,

the opposite occurs in the case of productions, where a steeper decay in the error is identified

with increments in the number of types of days. This idea can be better appreciated in the

sensitivity curves in Figure 6a and Figure 6b.

Therefore, as far as the battery charge level is concerned, for a fixed number of total435

system states, the model performs better when more daily system states are represented. For

aggregated productions, the opposite holds true. Table 1 shows an error comparison for all
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(a) (b)

Figure 6: MAE of thermal production and battery charge level obtained for every number of types of day
represented in a month (6a) and for every number of systems states modeled in a day (6b).

Table 1: MAE sensitivity for the possible configurations with 48 total system states per month

td st ∈ td MAPE ptt % MAE SOCb %

2 24 12.90 14.48
3 16 10.45 15.07
4 12 9.42 15.56
6 8 8.57 16.94
8 6 7.78 18.89
12 4 6.87 21.40
16 3 6.45 23.66
24 2 6.16 31.10

the configurations with the same total number of system states, equal to 48. The results

can be explained by the variability of the output being analyzed. In particular, the daily

cycle of batteries is characterized by a great level of fluctuation when integrated in power440

systems with high shares of renewables, as it is the case. Therefore, the more system states

are used, the more granularity is achieved. This makes it possible to correctly model this

kind of variability.
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Alternatively, variables with a very flat profile are less sensitive to the defined system

states, since just a few states are necessary to follow a low-variability profile.445

Regarding electricity prices, the methodology performs accurately, even when a high

temporal aggregation is defined. Overall, by increasing the granularity in types of days the

model yields more accurate electricity prices than by increasing the time resolution within

each day.

4. Conclusions450

This paper proposes a novel methodology that reduces the temporal dimension of medium-

and long-term power system models. The main purpose is to achieve computational tractable

problems while yielding accurate results.

Focused on the correct characterization of the variability of the net demand, a clustering

process has been implemented to transform the temporal structure of the input parameters455

into periods, types of days and system states. This arrangement is flexible and highly con-

figurable. At the same time, the incorporation of an efficient formulation of the operation of

energy storage systems in accordance with the methodology, makes a real-size problem man-

ageable and computationally not intensive. Following the proposed approach, it is possible

to determine an accurate dispatch of the units of the system including the special man-460

agement of backup gas power plants and short- and long-term energy storage technologies.

Ultimately, this makes it possible to capture the intricacies of power systems operation, and

to realistically represent the outcomes.

This methodology has been put to the test through its application to a real-size case study

of the MIBEL electricity market. In general, this methodology has proven to be effective to465

properly capture both short- and medium-term variability in real power systems. Following

the performed sensitivity analysis, it can be seen how the level of accuracy is highly dependent

on the selected temporal aggregation configuration. Hence, it is difficult to opt for a specific

one. This selection will be limited by the available computational resources and the desired

level of accuracy in the results. Still, results show that a very reasonable solution will be470

obtained even with a rather simplified temporal structure such as one consisting of 5 types

of days and 4 states within each day. This configuration represents a good trade-off between
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the accuracy of the results and the computational complexity.
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